If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+2=192
We move all terms to the left:
10n^2+2-(192)=0
We add all the numbers together, and all the variables
10n^2-190=0
a = 10; b = 0; c = -190;
Δ = b2-4ac
Δ = 02-4·10·(-190)
Δ = 7600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7600}=\sqrt{400*19}=\sqrt{400}*\sqrt{19}=20\sqrt{19}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{19}}{2*10}=\frac{0-20\sqrt{19}}{20} =-\frac{20\sqrt{19}}{20} =-\sqrt{19} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{19}}{2*10}=\frac{0+20\sqrt{19}}{20} =\frac{20\sqrt{19}}{20} =\sqrt{19} $
| 18(1+a/2)=18(3a+4/9 | | 18(1+a/2=18(3a+4/9 | | j-3=1/6 | | 0.5=0.82^x | | 12=3(k+4) | | m+20=42 | | 3x–1=5x-6 | | -3=25b/32 | | X*y=67/4(5) | | 1/9^x=729 | | 49x^2-28x+4=12 | | 2x+7x=2170 | | 10x(10)+17=180 | | 5z+8=10 | | 13x+2x+22=-23 | | T={(6+7)x4}+2(1/2(6)(4) | | 6s–11=6s+24 | | 4x/5+6=15 | | 3×(2a+6)=3a-12 | | 3v=7v-96 | | 7x+54=12x-40 | | 8j+2-3j=+8-5j | | 64=-16t^2+96t+112 | | 3x²-15=33 | | -4.9x^2-4.5x+14=0 | | 9x-8=7x–4 | | -1(x)=3x2-2x+1 | | x+½x=149 | | 8(x+1)=2x+26 | | 9xX2=52 | | x+2x=149 | | -7x(+6)=42 |